- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
基于硅芯片的光子学技术。
近年来在微电子学应用领域,基于硅芯片的平台技术占据了非常重要的作用。它如今是复杂的微处理器、大型存储电路和其它数字和模拟电子装置的基础。自从引入了绝缘硅片技术后,已经实现了将光子学功能集成到这种平台上,因此硅基光子集成回路成为可能。其中,不同的光学元件采用硅波导连接在一起。这种回路可用来实现电路板之间、电路板上的芯片间或者单个芯片间非常快的通信。这种通信链路的需求量很大,因为微处理器迅速的发展过程今后会受限于电子连接器有限的传输带宽。光数据传输能够实现更高的数据速率,同时也不存在电磁干扰的问题。这种技术在光纤通信的其它领域也非常重要,例如光纤入户。
硅光子学也可以从光子学角度去看,后者是基于其它材料的。应用硅光子学器件(即使是电泵浦的硅激光器和硅放大器),可以实现更小的、更便宜的光子器件,能够使一些目前因为成本问题无法实现的应用成为可能。
技术难点
尽管硅光子学有很大的前景,但是该技术也面临很多挑战:
- 由于硅具有非直接带隙,因此发光效率很低。尽管针对这一问题已经采用了很多解决方法,基于硅的激光器或放大器仍然无法与其它基于GaAs或者InP的激光器或放大器相媲美。
- 硅的带隙也较大,因此无法探测通讯波段1500nm和1300nm附近的光。
- 硅具有二阶非线性,因此无法制作电光调制器。
- 芯片上激光光源的散热也是一个问题。
- 光学连接器需要非常精准的对准,因此为了实现批量生产需要提高对准技术。
研究现状
下面简要描述硅光子学目前的研究现状:
- 硅适宜于制作波导传输光。例如制作采用氧化物包层的条形波导,其传输损耗小于1dB/cm。硅的透明范围从约1100nm到远红外区域。它对模式有很强的限制,因此即使在很大弯曲时也不会有很大的弯曲损耗。它也可以利用非线性实现一些特定的功能,例如通过四波混频实现放大。制作纳米锥形结构可以实现与单模光纤进行高效的耦合,具有很大的有效模式面积。
- 对于激光光源和放大器应用,由于硅具有间接带隙因此不能应用。有些在多孔硅和硅纳米颗粒方面的研究已经取得了一些进展,但是性能仍然不能与铟磷器件相比。但是,硅能够实现有效的拉曼放大,因为硅的拉曼增益系数很高,并且波导可以将模式限制在很小的范围内。尽管拉曼激光器或者放大器仍然需要光泵浦源,但是它能够得到更长的波长,甚至可以产生多个波长。另一个方法是在三五族半导体材料实现有源功能,然后与硅波导结构连接起来;硅波导的衰逝场足够强能够实现有效的放大。也可以利用直接在硅上生长锗制作单片结构,其中掺杂的锗作为激光器材料。
- 采用马赫-曾德尔干涉仪和相位调制能够得到硅基光调制器:通过在电极注入载流子可以改变干涉仪一个干涉臂的折射率,然后转化成相位变化引起传输功率的变化。还可以采用微环谐振腔。这种器件可以达到几个千兆的传输带宽。在硅上采用外延层锗也可以实现非常紧凑和高效率的电吸收调制器。
- 硅光电探测器只对波长小于1100nm的光敏感。在1500nm或1300nm附近通信波长的光电探测器可以采用SiGe材料实现。但是由于晶格失配会产生新的问题,产生晶格缺陷。