- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
- 相位调制器(phase modulators)
- 速度匹配光电探测器(velocity-matched photodetectors)
- 四分之一波片反射镜(quarter-wave mirrors)
- 双折射调谐器(birefringent tuners)
- 声光调制器(acousto-optic modulators)
- 普克尔斯盒(Pockels cells)
- 模消除腔(mode cleaner cavities)
- 模清洁器(mode cleaners)
- 脉冲选择器(pulse pickers)
- 量子阱(quantum wells)
- 量子点(quantum dots)
- 亮度转换器(brightness converters)
- 空间光调制器(Spatial Light Modulator)
- 可饱和半导体布拉格反射镜(saturable Bragg reflectors)
- 抗反射涂层(anti-reflection coatings)
- 金属反射镜(metal-coated mirrors)
- 金属-半导体-金属光探测器(metal–semiconductor–metal photodetectors)
- 金属-半导体-金属光电探测器(metal-semiconductor-metal photodetectors)
- 集成光学(integrated optics)
- 激光功率稳定系统(noise eaters)
- 积分球(integrating spheres)
- 硅光子学(silicon photonics)
- 光子学(photonics)
- 光学滤波器(optical filters)
- 光衰减器(optical attenuators)
- 光束整形器(beam shapers)
- 光电子学(optoelectronics)
- 光电探测器(photodetectors)
- 光导开关(photoconductive switches)
- 功率计(Powermeters)
- 法兰(Flange)
- 发光二极管(light-emitting diodes)
- 二色性反射镜(dichroic mirrors)
- 电吸收调制器(electroabsorption modulators)
- 电介质涂层(dielectric coatings)
- 电介质反射镜(dielectric mirrors)
- 电光调制器(electro-optic modulators)
- 超辐射光源(superluminescent sources)
- 超辐射发光二极管(superluminescent diodes)
- 超反射镜(supermirrors)
- 布儒斯特盘(Brewster plates)
- 布拉格反射镜(Bragg mirrors)
- 标准具(etalons)
- 半导体可饱和吸收反射镜(semiconductor saturable absorber mirrors)
- 白光光源(white light sources)
- Q开关(Q switches)
- P-I-N型光电二极管(p-i-n photodiodes)
- Lyot滤波器(Lyot filters)
- G-T干涉仪 interferometers(Gires–Tournois interferometers)
- GT干涉仪(Gires-Tournois interferometers)
定义:
一种薄层结构,在一维方向上限制载流子。
量子阱是一种薄层结构,可以在一维方向上,也就是垂直于薄层表面的方向上限制粒子(通常为电子或者空穴),而在其它方向上粒子的运动不受限制。
量子阱对粒子的限制是一种量子效应。它对受限制粒子的态密度有很大的影响。
对于矩形的量子阱来说,其态密度在特定能量间隔内是常数。
量子阱通常也是由薄层半导体介质制作的,嵌入在更宽带隙的半导体薄层之间(例如,GaAs量子阱嵌在AlGaAs中, 或者InGaAs嵌在GaAs中)
这种量子阱的厚度在5-20nm之间。这种薄层结构可以采用分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)方法制备。
电子和空穴都可以被限制在半导体量子阱中。
在光学泵浦的半导体激光器(垂直外腔表面发射激光器)中,大部分的泵浦光在量子阱周围的薄层中被吸收,然后产生的载流子就被量子阱捕获。
如果量子阱受到应力,可能是由晶格失配引起的(例如,InGaAs量子阱嵌入在GaAs中),电子态被改变,这在激光二极管中也非常有用。
半导体量子阱通常用在激光二极管的有源区,其中它被夹在两个具有更高带隙能量的宽的薄层之间。
这些包层类似于波导,如果带隙能量差足够大,电子和空穴就被有效的被限制在量子阱中。量子阱也可以用作半导体饱和吸收反射镜和电吸收调制器中的吸收器。
如果需要很大的光学增益或者吸收,可以使用多个量子阱,它们的间隙需要足够大以避免波函数之间的交叠。
































































































































































